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Abstract. We propose a novel class of temporal high-order parametric finite element methods
for solving a wide range of geometric flows of curves and surfaces. By incorporating the backward
differentiation formula (BDF) for time discretization into the BGN formulation, originally proposed
by Barrett, Garcke, and N\"urnberg (J. Comput. Phys., 222 (2007), pp. 441--467), we successfully
develop high-order BGN/BDFk schemes. The proposed BGN/BDFk schemes not only retain almost
all the advantages of the classical first-order BGN scheme such as computational efficiency and good
mesh quality, but also exhibit the desired kth-order temporal accuracy in terms of shape metrics,
ranging from second-order to fourth-order accuracy. Furthermore, we validate the performance of
our proposed BGN/BDFk schemes through extensive numerical examples, demonstrating their high-
order temporal accuracy for various types of geometric flows while maintaining good mesh quality
throughout the evolution.
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1. Introduction. Geometric flows, which are also known as geometric PDEs,
have been a subject of significant interest in the past several decades. These flows
involve the evolution of a geometric shape from one form to another and have found
applications in various fields, such as grain boundary motion [36], solid-state dewet-
ting [5, 43, 44], image processing [14, 40], biomembranes [17], and cellular automata
[25, 39]. Numerical simulation has played a crucial role in this rapidly growing research
area, aiding in the understanding of the underlying theory and guiding experimental
investigations.

One of the most important numerical methods is the parametric finite element
method, which was first proposed by Dziuk [19] for simulating mean curvature flow
of surfaces in three-dimensional space. Since then, this type of numerical scheme
has been extensively employed for solving various types of geometric flows arising
from science and engineering problems, including mean curvature flow [20, 30, 31],
surface diffusion flow [6, 27], Willmore flow [22, 23, 32], anisotropic flow [4, 9, 21],
and generalized mean curvature flow [8, 37, 13]. For a more comprehensive overview
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STABLE BDF-TYPE BGN-BASED PFEM FOR GEOMETRIC FLOWS A2875

of recent advances in the parametric finite element method, we recommend referring
to the survey papers [12, 16].

One of the main difficulties in solving the geometric flows by parametric finite
element methods is the mesh distortion problem. As time evolves, the nodes may
cluster together and the mesh deteriorates, leading to unstable simulations and al-
gorithm failures. To date, numerous efforts have been made to address this issue in
the literature. One approach is the use of artificial mesh regularization methods to
improve the distribution of mesh points during the evolution, as proposed by B\"ansch,
Morin, and Nochetto [3]. Another approach is to include an additional tangential ve-
locity functional in the equation to prevent numerical solutions from forming various
instabilities, as studied by Mikula and \v Sev\v covi\v c [41, 35]. As demonstrated in [15, 24],
DeTurck's trick or, more precisely, harmonic map meat flows can be utilized to main-
tain good mesh quality. In addition, a reparametrization technique based on a discrete
harmonic map [42] has been employed for remeshing the evolutionary polyhedron at
each time step. Recently, Hu and Li [26] have proposed a new evolving surface finite
element method by introducing an artificial tangential velocity to improve the mesh
quality for mean curvature flow and Willmore flow.

Instead of utilizing the mesh redistribution approach, the so-called BGN scheme,
originally proposed by Barrett, Garcke, and N\"urnberg, is a parametric finite element
method constructed based on a formulation which allows an intrinsic tangential ve-
locity to ensure a good distribution of mesh points [7, 8, 11]. Taking curve shortening
flow (CSF) as an example, now we present the key idea of the BGN scheme and our
approach to developing high-order BGN-based schemes. Let \Gamma := \Gamma (t) be a family of
simple closed curves embedded in the two-dimensional plane driven by CSF, i.e., the
velocity is given by

\scrV = - \kappa n.(1.1)

Here \kappa represents the curvature of the curve and we always assume that a circle has
a positive curvature, and n is the outward unit normal to \Gamma . First, the curve \Gamma (t) can
be represented by a vector function X(\cdot , t) : \BbbI \rightarrow \BbbR 2, where \BbbI := \BbbR /\BbbZ is the periodic
interval [0,1]. Then, (1.1) is rewritten as the following BGN formulation [8],

\partial tX \cdot n= - \kappa ,

\kappa n= - \partial ssX,
(1.2)

where s := s(t) represents the arc length of \Gamma (t). Compared to the original flow (1.1), a
new variable \kappa is introduced. This formulation is attractive since the normal velocity
remains unchanged, preserving the shape of the evolving curve. On the other hand,
the tangential velocity is not prescribed in (1.2), allowing for an intrinsic tangential
movement. Based on this formulation, a semidiscrete scheme was proposed [8],

Xm+1  - Xm

\tau 
\cdot nm = - \kappa m+1,

\kappa m+1nm = - \partial smsmXm+1,
(1.3)

where \cdot m represents the approximation solution at time tm :=m\tau with \tau as the time
step size, e.g., \Gamma m (which is parametrized by Xm) is an approximation of \Gamma (tm), and
nm, sm correspond to the approximations of the unit outer normal vector and arc
length, respectively. By using the linear finite element method in space and taking
the variational formulation over the polygon \Gamma m on both sides of equations, Barrett,
Garcke, and N\"urnberg derived the classical BGN scheme for CSF. It was shown that
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A2876 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

the resulting fully discrete BGN scheme is well-posed and possesses several desirable
properties, such as unconditional stability, energy dissipation, and asymptotic long-
time mesh equal distribution [7, 8, 12]. However, it is worth noting that the fully
discrete BGN scheme is limited to first-order accuracy in time, and developing a high-
order BGN-based scheme remains a challenging task. Actually, naive high-order time
discretizations based on the BGN formulation might cause mesh distortion problems
[18, 28]. For example, as pointed out in [18], high-order time discretizations by the
BDF, based on the BGN methods, probably become unstable (see Figures 4--5).

In this paper, we present a series of temporal high-order schemes using the BDF
based on the BGN formulation. The numerical instability problem pointed in [18] can
be avoided effectively by carefully selecting the prediction curve/surface to integrate
on. Taking the BDF2 time discretization of (1.2) as an example, we consider the
following semi-discrete in time scheme for CSF:

3
2X

m+1  - 2Xm + 1
2X

m - 1

\tau 
\widetilde nm+1 = - \kappa m+1,

\kappa m+1\widetilde nm+1 = - \partial \~sm+1\~sm+1Xm+1.

(1.4)

Here, we utilize a semi-implicit approach to avoid a fully implicit scheme. Thus a suit-
able explicit approximation \widetilde \Gamma m+1 of \Gamma (tm+1), on which \widetilde nm+1, \~sm+1 are then explicitly
calculated, is required such that only linear algebraic equations need to be solved at
each time step. This approach maintains high-order accuracy by carefully selecting
the approximation of the integration curve \widetilde \Gamma m+1 to adjust all numerical quantities at
the same time level tm+1. Indeed, we emphasize that the selection of \widetilde \Gamma m+1 is key to the
success of this scheme, especially in maintaining good mesh distribution and stability
during the evolution. Instead of using the classical extrapolation formulae from the
former parametrized functions Xm and Xm - 1, which might lead to mesh distortion
problems [18], here we choose the prediction curve \widetilde \Gamma m+1 (or equivalently \widetilde Xm+1) as
the solution of the classical first-order BGN scheme (1.3). Extensive numerical exper-
iments indicate that expected second-order accuracy in time can be achieved in terms
of shape metrics, good mesh quality is maintained during the evolution and mesh dis-
tortion can be prevented effectively (see section 3 and Remark 4.3). The same idea
can be further extended to develop BGN/BDFk schemes for k= 3,4,5,6.

It is worth mentioning that various efforts have been made in the literature to
develop high-order temporal schemes for solving geometric flows, each based on differ-
ent approaches. For example, an implicit Crank-Nicolson-type scheme was designed
for forced CSF by combining with mesh redistribution [2] or an adaptive moving
mesh technique [34] to maintain a good mesh quality. Both schemes have been shown
to converge quadratically in time but require solving a system of nonlinear equa-
tions at each time step. Based on evolving surface finite element methods and the
BDF, Kov\'acs, Li, and Lubich proposed some high-order numerical schemes for solving
mean curvature flow and Willmore flow [30, 31, 32]. Due to the lack of the tangential
velocity, these schemes may suffer from mesh clustering and distortion, leading to
breakdowns of simulations in some cases. Very recently, by introducing an artificial
tangential velocity determined by a harmonic map from a fixed reference surface to
the unknown evolving surface, Duan and Li have proposed a new class of parametric
finite element methods, including a second-order scheme, with good mesh quality for
simulating various types of geometric flows [18].

Among the aforementioned works, our proposed BGN-based high-order schemes
inherit most of the advantages from the classical BGN scheme, including

\bullet good mesh quality is maintained during the evolution and no numerical in-
stability occurs;
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STABLE BDF-TYPE BGN-BASED PFEM FOR GEOMETRIC FLOWS A2877

\bullet the methods can be easily implemented very efficiently, as only linear alge-
braic equations need to be solved at each time step;

\bullet the methods can be extended straightforwardly to a wide range of geomet-
ric flows of curves or surfaces, such as area-preserving mean curvature flow,
generalized mean curvature flow, and Willmore flow;

and, more importantly,
\bullet the approach can be extended to higher-order BDFk schemes which converge

at the k-th order in time in terms of shape metrics while keeping all the above
superiorities.

Compared to the method proposed by [18] that also employs BDF methods and
achieves favorable mesh quality, we emphasize that our approach is based on the
classical BGN scheme, requiring only minor modifications. Moreover, our innova-
tive strategy of iteratively selecting the prediction curve/polyhedron using low-order
BDFk methods effectively combines both the evolving nature of the problem and the
desirable mesh properties. This strategy is promising for potential applications in
other numerical methods for geometric flows.

The rest of this paper is organized as follows. In section 2, we provide a brief
overview of the classical first-order BGN scheme, using CSF and mean curvature flow
(MCF) as examples. In section 3, we propose high-order BGN/BDFk schemes for
solving various types of geometric flows. To demonstrate the accuracy, efficiency, and
applicability of our high-order algorithms, we present numerous numerical examples
for simulating curve and surface evolution driven by different types of geometric flows
in section 4. Finally, we summarize our findings, draw some conclusions based on the
results, and discuss potential future research directions in this field in section 5.

2. Review of classical BGN scheme. In this section, we review the classical
first-order BGN schemes for CSF and its three-dimensional analogue MCF, which
were proposed by Barrett, Garcke and N\"urnberg [7, 8, 10, 12]. To begin with, we
rewrite the CSF into the BGN formulation (1.2).

We introduce the following finite element approximation. Let \BbbI = [0,1] =
\bigcup N

j=1 Ij ,
N \geq 3, be a decomposition of \BbbI into intervals given by the nodes \rho j , Ij = [\rho j - 1, \rho j ].
Let h = max1\leq j\leq N | \rho j  - \rho j - 1| be the maximal length of the grid. Define the linear
finite element space as

V h := \{ u\in C(\BbbI ) : u| Ij is linear \forall j = 1,2, . . . ,N ; u(\rho 0) = u(\rho N )\} \subseteq H1(\BbbI ,\BbbR ).

The mass lumped inner product (\cdot , \cdot )h\Gamma h over the polygonal \Gamma h, which is an approxi-
mation of the inner product (\cdot , \cdot )\Gamma h by using the composite trapezoidal rule, is defined
as

(u, v)h\Gamma h :=
1

2

N\sum 
j=1

| Xh(\rho j) - Xh(\rho j - 1)| 
\bigl[ 
(u \cdot v)(\rho  - j ) + (u \cdot v)(\rho +j - 1)

\bigr] 
,

where Xh is a parametrization of \Gamma h, Xh(\rho j) is the vertex of the polygon \Gamma h, and
u, v are two scalar/vector piecewise continuous functions with possible jumps at the
nodes \{ \rho j\} Nj=1 and u(\rho \pm j ) = lim\rho \rightarrow \rho \pm 

j
u(\rho ).

Subsequently, the semidiscrete scheme of the formulation (1.2) is as follows: given
an initial polygon \Gamma h(0) with vertices lying on the initial curve \Gamma (0) in a clockwise
manner, parametrized by Xh(\cdot ,0)\in [V h]2, find (Xh(\cdot , t), \kappa h(\cdot , t))\in [V h]2\times V h so that\Biggl\{ \bigl( 

\partial tX
h \cdot nh,\varphi h

\bigr) h
\Gamma h +

\bigl( 
\kappa h,\varphi h

\bigr) h
\Gamma h = 0 \forall \varphi h \in V h,\bigl( 

\kappa h,nh \cdot \bfitomega h
\bigr) h
\Gamma h  - 

\bigl( 
\partial sX

h, \partial s\bfitomega 
h
\bigr) 
\Gamma h = 0 \forall \bfitomega h \in [V h]2,

(2.1)
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A2878 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

where we always integrate over the current curve \Gamma h described by Xh, the outward
unit normal nh is a piecewise constant vector given by

nh| Ij = - 
h\bot 
j

| hj | 
, hj =Xh(\rho j , t) - Xh(\rho j - 1, t), j = 1, . . . ,N,

with \cdot \bot denoting clockwise rotation by \pi 
2 , and the partial derivative \partial s is defined

piecewisely over each side of the polygon \partial sf | Ij =
\partial \rho f

| \partial \rho Xh| | Ij =
(\rho j - \rho j - 1)\partial \rho f | Ij

| hj | . It was

shown that the scheme (2.1) will always equidistribute the vertices along \Gamma h for t > 0
if they are not locally parallel (see Remark 2.4 in [7]).

For a full discretization, we fix \tau > 0 as a uniform time step size for simplicity, and
let Xm \in [V h]2 and \Gamma m be the approximations of X(\cdot , tm) and \Gamma (tm), respectively,
for m = 0,1,2, . . ., where tm := m\tau . We define hm

j := Xm(\rho j)  - Xm(\rho j - 1) and
assume | hm

j | > 0 for j = 1, . . . ,N \forall m > 0. The discrete unit normal vector nm,
the discrete inner product (\cdot , \cdot )h\Gamma m , and the discrete operator \partial s are defined similarly
as in the semidiscrete case. Barrett, Garcke, and N\"urnberg used a formal first-order
approximation [7, 8] to replace the velocity \partial tX, \kappa and \partial sX by

\partial tX(\cdot , tm) =
X(\cdot , tm+1) - X(\cdot , tm)

\tau 
+\scrO (\tau ),

\kappa (\cdot , tm) = \kappa (\cdot , tm+1) +\scrO (\tau ),

\partial sX(\cdot , tm) = \partial sX(\cdot , tm+1) +\scrO (\tau ),

and the fully discrete semiimplicit BGN scheme reads as follows:
BGN1, the classical first-order BGN scheme for CSF: For m \geq 0, find Xm+1 \in 

[V h]2 and \kappa m+1 \in V h such that\left\{     
\biggl( 
Xm+1  - Xm

\tau 
,\varphi hnm

\biggr) h

\Gamma m

+
\bigl( 
\kappa m+1,\varphi h

\bigr) h
\Gamma m = 0 \forall \varphi h \in V h,\bigl( 

\kappa m+1,nm \cdot \bfitomega h
\bigr) h
\Gamma m  - 

\bigl( 
\partial sX

m+1, \partial s\bfitomega 
h
\bigr) 
\Gamma m = 0 \forall \bfitomega h \in [V h]2.

(2.2)

The well-posedness and energy stability were established under some mild conditions
[12]. In practice, numerous numerical results show that the classical BGN scheme
(2.2) converges quadratically in space [8] and linearly in time [28].

The above idea has been successfully extended to the MCF in \BbbR 3 [10]. The gov-
erning equation of MCF is given by

\scrV = - \scrH n,(2.3)

where \scrH is the mean curvature of the hypersurface. Following the lines in [10, 12],
(2.3) can be reformulated as

\partial tX \cdot n= - \scrH ,

\scrH n= - \Delta \Gamma Id,
(2.4)

where \Delta \Gamma is the surface Laplacian (i.e., Laplace--Beltrami operator) and Id is the iden-
tity map on \Gamma . For the finite element approximation, suppose we have a polyhedra
surface \Gamma m approximating the closed surface \Gamma (tm), which is a union of nondegenerate
triangles with no hanging vertices

\Gamma m :=

J\bigcup 
j=1

\sigma m
j ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STABLE BDF-TYPE BGN-BASED PFEM FOR GEOMETRIC FLOWS A2879

where \{ \sigma m
j \} Jj=1 is a family of mutually disjoint open triangles. Set h=max1\leq j\leq J diam

(\sigma m
j ). Denote Wh

m :=Wh(\Gamma m) by the space of scalar continuous piecewise linear func-
tions on \Gamma m, i.e.,

Wh
m =Wh(\Gamma m) :=

\Bigl\{ 
u\in C(\Gamma m,\BbbR ) : u| \sigma m

j
is linear \forall j = 1, . . . , J

\Bigr\} 
\subseteq H1(\Gamma m,\BbbR ).

Similarly, for piecewise continuous scalar or vector functions u, v \in L2(\Gamma m,\BbbR 3) with
possible jumps at the edges of \sigma m

j , the L2 inner product (\cdot , \cdot )\Gamma m over the polyhedral
surface \Gamma m,

(u, v)\Gamma m =

\int 
\Gamma m

u \cdot v dA,

can be approximated by the mass lumped inner product

(u, v)
h
\Gamma m :=

1

3

J\sum 
j=1

| \sigma m
j | 

3\sum 
k=1

(u \cdot v)
\bigl( 
(qm

jk
) - 
\bigr) 
,

where \{ qj1 ,qj2 ,qj3\} are the vertices of the triangle \sigma m
j , | \sigma m

j | is the area of \sigma m
j , and

u
\bigl( 
(qm

jk
) - 
\bigr) 
= lim

\sigma m
j \ni x\rightarrow qm

jk

u(x).

Similarly, the classical first-order BGN scheme for MCF was proposed as the
following [10]:

BGN1, the classical BGN, first-order scheme for MCF: Given \Gamma 0 and the identity
function X0 \in Wh

0 on \Gamma 0, for m\geq 0, find Xm+1 \in [Wh
m]3 and \scrH m+1 \in Wh

m such that\left\{     
\biggl( 
Xm+1  - Xm

\tau 
,\varphi hnm

\biggr) h

\Gamma m

+
\bigl( 
\scrH m+1,\varphi h

\bigr) h
\Gamma m = 0 \forall \varphi h \in Wh

m,\bigl( 
\scrH m+1,nm \cdot \bfitomega h

\bigr) h
\Gamma m  - 

\bigl( 
\nabla \Gamma mXm+1,\nabla \Gamma m\bfitomega h

\bigr) 
\Gamma m = 0 \forall \bfitomega h \in [Wh

m]3,

(2.5)

where the outward unit normal vector nm of \Gamma m is defined piecewisely over triangle
\{ \sigma m

j \} as

nm| \sigma m
j
= nm

j :=
(qm

j2
 - qm

j1
)\times (qm

j3
 - qm

j1
)

| (qm
j2
 - qm

j1
)\times (qm

j3
 - qm

j1
)| 
,

and Xm(\cdot ) is the identity function on [Wh
m]3. The surface gradient \nabla \Gamma over polyhedra

\Gamma is defined for f \in Wh(\Gamma ) piecewisely on triangles \{ \sigma j\} with vertices \{ qj1 ,qj2 ,qj3\} 
as

(\nabla \Gamma f)| \sigma j
:=f(qj1)

(qj3  - qj2)\times nj

| \sigma j | 
+ f(qj2)

(qj1  - qj3)\times nj

| \sigma j | 
+ f(qj3)

(qj2  - qj1)\times nj

| \sigma j | 
.

The well-posedness and energy stability were also established under some mild con-
ditions [10], and a quadratic convergence rate in space was reported.

Throughout the paper, the first-order BGN scheme (2.2) or (2.5) is referred to as
the BGN1 scheme.
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A2880 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

3. High order in time, BGN-based algorithms. In this section, we propose
high-order temporal schemes based on the BDF. For simplicity of notation, here we
only present the schemes for the CSF, and similar schemes can be proposed for MCF
in \BbbR 3. Specifically, we approximate the term \partial tX based on the following Taylor
expansions [33]:

\partial tX(\cdot , tm+1) =

\left\{       
3
2X(\cdot ,tm+1) - 2X(\cdot ,tm)+ 1

2X(\cdot ,tm - 1)

\tau +\scrO (\tau 2),
11
6 X(\cdot ,tm+1) - 3X(\cdot ,tm)+ 3

2X(\cdot ,tm - 1) - 1
3X(\cdot ,tm - 2)

\tau +\scrO (\tau 3),
25
12X(\cdot ,tm+1) - 4X(\cdot ,tm)+3X(\cdot ,tm - 1) - 4

3X(\cdot ,tm - 2)+
1
4X(\cdot ,tm - 3)

\tau +\scrO (\tau 4).

Thus the velocity is approximated with an error of \scrO (\tau k), 2 \leq k \leq 4, at the time
level tm+1. By taking the mass lumped inner product over a suitable predictor \widetilde \Gamma m+1,
which is an approximation of \Gamma (tm+1), we obtain the following high-order schemes
(denoted as BGN/BDFk schemes) for 2\leq k\leq 4.

BGN/BDFk, high-order schemes for CSF: For k= 2,3,4, m\geq k - 1, find Xm+1 \in 
[V h]2 and \kappa m+1 \in V h such that\left\{       

\Biggl( 
aXm+1  - \widehat Xm

\tau 
,\varphi h\widetilde nm+1

\Biggr) h

\widetilde \Gamma m+1

+
\bigl( 
\kappa m+1,\varphi h

\bigr) h\widetilde \Gamma m+1 = 0 \forall \varphi h \in V h,\bigl( 
\kappa m+1, \widetilde nm+1 \cdot \bfitomega h

\bigr) h\widetilde \Gamma m+1  - 
\bigl( 
\partial sX

m+1, \partial s\bfitomega 
h
\bigr) \widetilde \Gamma m+1 = 0 \forall \bfitomega h \in [V h]2,

(3.1)

where a, \widehat Xm are defined as

BDF2 : a=
3

2
, \widehat Xm = 2Xm  - 1

2
Xm - 1;(3.2)

BDF3 : a=
11

6
, \widehat Xm = 3Xm  - 3

2
Xm - 1 +

1

3
Xm - 2;(3.3)

BDF4 : a=
25

12
, \widehat Xm = 4Xm  - 3Xm - 1 +

4

3
Xm - 2  - 1

4
Xm - 3,(3.4)

where \widetilde \Gamma m+1, described by \widetilde Xm+1 \in [V h]2, is a suitable approximation of \Gamma (tm+1),\widetilde nm+1 :=  - (
\partial \rho 

\widetilde Xm+1

| \partial \rho 
\widetilde Xm+1| 

)\bot is the normal vector, and the derivative \partial s is defined with

respect to the arc length of \widetilde \Gamma m+1.
Before introducing the specific choice of the approximation \widetilde \Gamma m+1, we first estab-

lish the fundamental properties of the above BGN/BDFk schemes (3.1). The first
crucial property is the well-posedness of (3.1) under some mild conditions.

Theorem 3.1 (well-posedness). For k = 2,3,4, m \geq k  - 1, assume that the
polygon \widetilde \Gamma m+1 in the BGN/BDFk schemes (3.1) satisfies the following two conditions:
(i) At least two vectors in \{ \widetilde hm+1

j \} Nj=1 are not parallel, i.e.,

dim

\biggl( 
Span

\Bigl\{ \widetilde hm+1
j

\Bigr\} N

j=1

\biggr) 
= 2.

(ii) No vertices degenerate on \widetilde \Gamma m+1, i.e.,

min
1\leq j\leq N

| \widetilde hm+1
j | > 0.

Then the above BGN/BDFk schemes (3.1) are well-posed, i.e., there exists a unique
solution (Xm+1, \kappa m+1)\in [V h]2 \times V h of (3.1).
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Proof. Thanks to the linearity of the scheme (3.1), it suffices to prove that the
following algebraic system for (X, \kappa )\in [V h]2 \times V h has only a zero solution,\Biggl\{ \bigl( 

aX
\tau ,\varphi h\widetilde nm+1

\bigr) h\widetilde \Gamma m+1 +
\bigl( 
\kappa ,\varphi h

\bigr) h\widetilde \Gamma m+1 = 0 \forall \varphi h \in V h,\bigl( 
\kappa , \widetilde nm+1 \cdot \bfitomega h

\bigr) h\widetilde \Gamma m+1  - 
\bigl( 
\partial sX, \partial s\bfitomega 

h
\bigr) \widetilde \Gamma m+1 = 0 \forall \bfitomega h \in [V h]2.

Taking \varphi h = \kappa and \bfitomega h =X, noticing that a> 0, we arrive at

X\equiv Xc, \kappa \equiv \kappa c.(3.5)

Then the standard argument in [7, Theorem 2.1] yields Xc = 0 and \kappa c = 0 by the
assumption on \widetilde \Gamma m+1.

It remains to determine \widetilde \Gamma m+1 or, equivalently, \widetilde Xm+1. Indeed, the formulation of
this predictor plays a crucial role in the success of BGN/BDFk schemes. A natural
approach is to apply standard extrapolation formulas, such as

\widetilde Xm+1 = 2Xm  - Xm - 1, BDF2,(3.6) \widetilde Xm+1 = 3Xm  - 3Xm - 1 +Xm - 2, BDF3,(3.7) \widetilde Xm+1 = 4Xm  - 6Xm - 1 + 4Xm - 2  - Xm - 3, BDF4.(3.8)

Unfortunately, as discussed in [18], naively extrapolating the curves as functions may
result in the instability of high-order schemes (see also Remark 4.3). In this paper,
we utilize the solution of the lower-order BGN/BDFk scheme to predict the discrete
polygon \widetilde \Gamma m+1 or, equivalently, \widetilde Xm+1, in the BGN/BDFk scheme. In particular, for
k = 1, the BGN/BDF1 scheme represents the classical BGN1 scheme, which is used
to predict \widetilde \Gamma m+1 in the BGN/BDF2 scheme.

To start the BGN/BDFk scheme, it is necessary to prepare the initial data
X0, . . . ,Xk - 1, which are supposed to be approximations of X(\cdot ,0), . . . ,X(\cdot , tk - 1) with
an error at the kth order \scrO (\tau k). This can be accomplished by utilizing the BGN1
scheme (2.2) with a finer time step. Specifically, to obtain an approximation ofX(\cdot , t1)
with an error at\scrO (\tau k), where k= 2,3,4, it is sufficient to implement the BGN1 scheme
with a time step size \widetilde \tau \sim \tau k - 1 by \tau /\widetilde \tau steps. Taking into account the truncation error
of the BGN1 scheme (2.2), the accumulated temporal error at t1 = \tau is given by

\widetilde \tau 2 \ast \tau /\widetilde \tau \sim \tau k, k= 2,3,4.

Now we are ready to present our BGN/BDFk schemes. Throughout all the algo-
rithms, we always use \Gamma m and \widetilde \Gamma m to represent the polygon described by the vector
functions Xm, \widetilde Xm \in [V h]2, respectively.

Remark 3.2. A similar approach can be utilized to construct BGN/BDF5 and
BGN/BDF6 algorithms, but for the sake of brevity, we omit the details here.

It is worth noting that the classical first-order BGN scheme exhibits favorable
properties in terms of mesh distribution. As observed in [8, 10], the node points are
moved tangentially, resulting in eventual equidistribution in practice. Furthermore,
it has been demonstrated in previous studies [12, 44] that the mesh will eventually
become evenly distributed if the solution has an equilibrium state. In other words, the
mesh becomes asymptotically equidistributed when the solution has a nondegenerate
equilibrium, such as in the case of area-preserving CSF or surface diffusion. Addition-
ally, recent discoveries have highlighted the significant role of the BGN1 scheme in
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Algorithm 3.1 BGN/BDF2 algorithm.

Require: An initial curve \Gamma (0) approximated by a polygon \Gamma 0 with N vertices,
described by X0 \in [V h]2, time step \tau , and terminate time T satisfying T/\tau \in \BbbN .

1: Calculate X1 by using BGN1 scheme (2.2) with \Gamma 0 and \tau . Set m= 1.
2: while m<T/\tau , do

3: \bullet Compute \widetilde Xm+1 by using BGN1 scheme (2.2) with \Gamma m and \tau .
\bullet Compute Xm+1 by using the BGN/BDF2 scheme (3.1)--(3.2) with

Xm - 1,Xm, \widetilde \Gamma m+1, and \tau .
4: m=m+ 1;
5: end while

Algorithm 3.2 BGN/BDF3 algorithm.

Require: An initial curve \Gamma (0) approximated by a polygon \Gamma 0 (parametrized as
X0 \in [V h]2) with N vertices, terminate time T , time step \tau , and a finer time
step \widetilde \tau \sim \tau 2.

1: Calculate X1 by using BGN1 scheme (2.2) with \Gamma 0 and \widetilde \tau for \tau /\widetilde \tau steps.
2: Calculate X2 by using the BGN/BDF2 algorithm (Algorithm 3.1) with X0, X1,

and \tau . Set m= 2.
3: while m<T/\tau , do

4: \bullet Compute \widetilde Xm+1 by using the BGN/BDF2 algorithm (Algorithm 3.1)
with Xm - 1,Xm, and \tau .

\bullet Compute Xm+1 by using the BGN/BDF3 scheme (3.1) and (3.3) with

Xm - 2,Xm - 1,Xm, \widetilde \Gamma m+1, and \tau .
5: m=m+ 1;
6: end while

Algorithm 3.3 BGN/BDF4 algorithm.

Require: An initial curve \Gamma (0) approximated by a polygon \Gamma 0 (parametrized as
X0 \in [V h]2) with N vertices, terminate time T , time step \tau , and a finer time
step \widetilde \tau \sim \tau 3.

1: Calculate X1 by using BGN1 scheme (2.2) with \Gamma 0 and \widetilde \tau for \tau /\widetilde \tau steps.
2: Calculate X2 by using BGN1 scheme (2.2) with \Gamma 1 and \widetilde \tau for another \tau /\widetilde \tau steps.
3: Calculate X3 by using the BGN/BDF3 algorithm (Algorithm 3.2) with X0, X1,

X2, and \tau . Set m= 3.
4: while m<T/\tau , do

5: \bullet Compute \widetilde Xm+1 by the BGN/BDF3 algorithm (Algorithm 3.2) with
Xm - 2,Xm - 1,Xm, and \tau .

\bullet Compute Xm+1 by the BGN/BDF4 scheme (3.1) and (3.4) with

Xm - 3,Xm - 2,Xm - 1,Xm, \widetilde \Gamma m+1, and \tau .
6: m=m+ 1;
7: end while

improving mesh quality when implementing a second-order BGN-type Crank--Nicolson
leapfrog scheme occasionally [28]. It is worth emphasizing that the BGN1 scheme is
utilized at every step of the mentioned BDFk algorithms, offering great promise in
ensuring favorable mesh distribution (cf. section 4) and preventing mesh distortion
or numerically induced self-intersections.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/0

9/
24

 to
 8

9.
24

4.
12

0.
17

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



STABLE BDF-TYPE BGN-BASED PFEM FOR GEOMETRIC FLOWS A2883

4. Numerical results. In this section, we provide numerous numerical exam-
ples to demonstrate the high-order convergence and advantageous properties in terms
of mesh distribution of our BGN/BDFk algorithms for various types of geometric
flows.

4.1. Curve evolution. In this subsection, we mainly focus on the following
types of geometric flows of curves in the plane:

\bullet (CS), which is the L2-gradient flow of the length functional E(\Gamma ) =
\int 
\Gamma 
ds.

\bullet Area-preserving curve shortening flow (AP-CSF), which is the L2-gradient
flow of the length functional with the constraint of a fixed enclosed area.
This is a nonlocal second-order geometric flow with the governing equation

\scrV = ( - \kappa + \langle \kappa \rangle )n,(4.1)

where \langle \kappa \rangle :=
\int 
\Gamma (t)

\kappa ds/
\int 
\Gamma (t)

ds is the average curvature.

\bullet Generalized MCF (G-MCF), which is given by

\scrV = - \beta \kappa \alpha n,(4.2)

where \alpha and \beta are two real numbers satisfying \alpha \beta > 0. For 0 < \alpha \not = 1 and
\beta = 1, it is called as the powers of MCF; for \alpha = - 1 and \beta = - 1, it is called
as the inverse MCF.

\bullet Willmore flow (WF), which is the L2-gradient flow of the Willmore energy
functional W (\Gamma ) = 1

2

\int 
\Gamma 
\kappa 2 ds. This is a fourth-order geometric flow with the

governing equation

\scrV =

\biggl( 
\partial ss\kappa  - 1

2
\kappa 3

\biggr) 
n.(4.3)

Based on the wide applicability of BGN-type methods [7, 8, 9, 10, 12], we can easily
extend our BGN/BDFk algorithms to the aforementioned geometric flows with minor
adjustments.

To test the convergence rate of our proposed BGN/BDFk schemes, it is advisable
to employ shape metrics for measuring the numerical errors of the BGN-type schemes,
as they allow an intrinsic tangential movement in order to facilitate a more uniform
distribution of mesh points along the evolving curve or surface (see [28, section 3]).
In the following examples, we utilize the manifold distance to quantify the difference
between two curves. Specifically, the manifold distance between two curves \Gamma 1 and
\Gamma 2 is defined as [28, 44]

M(\Gamma 1,\Gamma 2) := | \Omega 1\Delta \Omega 2| = | \Omega 1| + | \Omega 2|  - 2| \Omega 1 \cap \Omega 2| , \Omega 1\Delta \Omega 2 = (\Omega 1 \setminus \Omega 2)\cup (\Omega 2 \setminus \Omega 1),
(4.4)

where \Omega 1 and \Omega 2 represent the regions enclosed by the two curves \Gamma 1 and \Gamma 2, respec-
tively, and | \Omega | denotes the area of \Omega . It has been proved that the manifold distance
satisfies the properties of symmetry, positivity, and triangle inequality (see Proposi-
tion 5.1 in [44]). Thus it can be seen as a type of shape metric. Under some suitable
assumptions, it is related to the L1 norm of a distance function. Specifically, assume
that \Gamma 1 is a C2 curve and \Gamma \delta := \{ x \in \BbbR 2| | d(x,\Gamma 1)| < \delta \} is its tabular neighborhood
[16], where d(x,\Gamma 1) is the signed distance function. If \Gamma 2 \subset \Gamma \delta and the projection map
from \Gamma 2 to \Gamma 1 is one-to-one, then the manifold distance is indeed the L1 norm of the
distance function

M(\Gamma 1,\Gamma 2) =

\int 
\Gamma 1

| d(\cdot ,\Gamma 2) | ds.
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Very recently, Bai and Li [1] have given a proof of convergence for Dziuk's parametric
finite element method with finite elements of degree k\geq 3 for MCF. Their convergence
result holds in the L2 norm, which measures the L2 norm of the distance between two
curves or surfaces. We also note that since numerical solutions are here represented as
polygonal curves/polyhedron surfaces, it is very easy to calculate the area/volume of
the symmetric difference region, i.e., the manifold distance. In practice, the computa-
tion of manifold distance can be conveniently performed using the MATLAB packages
polyshape and alphaShape.

To test the temporal errors, we fix the number of nodes N large enough so that
the spatial error can be neglected, and we vary the time step. The numerical error
and the corresponding convergence order at time T under the manifold distance are
then computed as follows,

\scrE \tau (T ) = \scrE M (T ) =M(XT/\tau ,Xref), Order = log

\biggl( 
\scrE \tau 1(T )
\scrE \tau 2(T )

\biggr) \Big/ 
log

\biggl( 
\tau 1
\tau 2

\biggr) 
,(4.5)

where XT/\tau represents the computed solutions using a time step of \tau until time T ,
and Xref represents the reference solutions, either given by the exact solution or
approximated by some numerical solution with a sufficiently fine mesh size and tiny
time step when the true solution is not available.

To test the stability properties of our proposed schemes, we investigate the evo-
lution of the following three important quantities with respect to evolving curves:
(1) the relative area loss \Delta A(t), (2) the normalized perimeter L(t)/L(0), and (3) the
mesh distribution function \Psi (t), which are defined, respectively, as follows:

\Delta A(t)| t=tm =
Am  - A0

A0
,

L(t)

L(0)

\bigm| \bigm| \bigm| \bigm| 
t=tm

=
Lm

L0
, \Psi (t)| t=tm =\Psi m :=

maxj | hm
j | 

minj | hm
j | 

,

where Am and Lm represent the enclosed area and the perimeter of the polygon
determined by Xm, respectively.

Example 4.1 (convergence rate of the BGN/BDFk scheme for CSF). We check the
convergence rate of the classical BGN1 scheme (2.2) and BGN/BDFk schemes (3.1)
for CSF. The initial curve is chosen as either a unit circle or an ellipse defined by
x2/4 + y2 = 1. The parameters are set as N = 10000, T = 0.25.

For the case of the unit circle, it is well known that the CSF admits the exact
solution

Xtrue(\rho , t) =
\surd 
1 - 2t(cos(2\pi \rho ), sin(2\pi \rho )), \rho \in \BbbI , t\in [0,0.5).

While for the ellipse case, since the true solution is unavailable, we compute the
reference solution using the BGN/BDF4 algorithm with a fine mesh including N =
10000 nodes and a tiny time step of \tau = 1/2560. Figures 1(a)--1(b) present a log-log
plot of the numerical errors at time T = 0.25 for the classical BGN1 scheme (2.2) and
BGN/BDFk schemes (3.1). It can be clearly observed that the classical BGN1 scheme
has only first-order accuracy in time, while the BGN/BDFk scheme achieves kth-
order accuracy with 2\leq k\leq 4 for both the unit circle and ellipse cases. Furthermore,
Figures 1(c) and 1(d) show the evolution of the mesh distribution function \Psi (t) of
BGN/BDFk algorithms, from which we clearly see that the proposed BGN/BDFk
schemes share the same favorable properties with respect to the mesh distribution.
Once the initial curve is approximated by a polygon with high mesh quality, the mesh
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Fig. 1. Log-log plot of the manifold distance errors via the classical BGN1 scheme and the
BGN/BDFk schemes (2\leq k \leq 4) at time T = 0.25 for solving CSF with two various initial curves:
(a) unit circle and (b) ellipse; and the evolution of the mesh distribution function \Psi (t): (c) unit
circle and (d) ellipse, where N = 640 and \tau = 1/1280.

will maintain its quality throughout the evolution. This characteristic significantly
enhances the robustness of our BGN/BDFk schemes.

To further investigate the impact of the initial parametrization on the high-order
accuracy and mesh quality of the BGN/BDFk algorithms, we conduct additional
experiments using the unit circle as the initial curve. We consider two choices for
approximating the N -polygon:

\bullet Regular polygon: the nodes are set as

Xi = (cos(2\pi i/N), sin(2\pi i/N)), i= 1, . . . ,N.

This ensures an initial mesh ratio of 1 up to machine precision.
\bullet Irregular polygon: the nodes are chosen as

Xi = (cos(2\pi i/N + 0.1 sin(2\pi i/N)), sin(2\pi i/N + 0.1 sin(2\pi i/N)),

i= 1, . . . ,N.

This type of distribution can be traced back to [8, section 3.1]. It is clear
that the initial mesh ratio deviates from 1.

Figures 2(a)--2(b) demonstrate the robust temporal convergence of the BGN/BDFk
algorithms of kth-order for both initial distributions. Additionally, Figure 2(c) shows
that when using a uniform initial distribution, the mesh ratio remains close to 1 up to
machine precision. On the other hand, Figure 2(d) illustrates that the BGN/BDF4
algorithm significantly reduces the mesh ratio at the first time step. This is because
we compute the polygon \Gamma 1 using the BGN1 scheme for \tau /\widetilde \tau steps (cf. Algorithm 3.3),
and the BGN1 scheme demonstrates favorable properties in terms of mesh distribution
for curve evolution [8, 10, 28].
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Fig. 2. Log-log plot of the manifold distance errors at time T = 0.25 for solving CSF with a unit
circle being the initial curve: (a) uniform initial distribution; (b) nonuniform initial distribution;
and the evolution of the mesh distribution function \Psi (t): (c) uniform initial distribution and (d)
nonuniform initial distribution, where N = 640 and \tau = 1/1280.

Example 4.2 (extension to AP-CSF). We extend the BGN/BDFk schemes to
the AP-CSF and check the convergence rate of the BGN1 scheme and BGN/BDFk
schemes. The initial curve is chosen as an ellipse. The parameters are chosen as
N = 10000, T = 0.25 and 1.

We briefly show how to construct BGN/BDFk schemes for AP-CSF. We first
write the governing equation of AP-CSF into the following coupled equations:

\partial tX \cdot n= - \kappa + \langle \kappa \rangle ,
\kappa n= - \partial ssX.

(4.6)

The corresponding BGN1 scheme and BGN/BDFk schemes adjust the first equation
in (2.2) and (3.1) to their nonlocal versions as\biggl( 

Xm+1  - Xm

\tau 
,\varphi hnm

\biggr) h

\Gamma m

= - 
\bigl( 
\kappa m+1  - 

\bigl\langle 
\kappa m+1

\bigr\rangle 
\Gamma m ,\varphi h

\bigr) h
\Gamma m

,\Biggl( 
aXm+1  - \widehat Xm

\tau 
,\varphi h\widetilde nm+1

\Biggr) h

\widetilde \Gamma m+1

= - 
\bigl( 
\kappa m+1  - 

\bigl\langle 
\kappa m+1

\bigr\rangle \widetilde \Gamma m+1 ,\varphi 
h
\bigr) h\widetilde \Gamma m+1

,

respectively, where
\bigl\langle 
\kappa m+1

\bigr\rangle 
\Gamma m :=

(\kappa m+1,1)h\Gamma m

(1,1)h
\Gamma m

,
\bigl\langle 
\kappa m+1

\bigr\rangle \widetilde \Gamma m+1 :=
(\kappa m+1,1)h\widetilde \Gamma m+1

(1,1)h\widetilde \Gamma m+1

, and the

a, \widehat Xm are defined by (3.2)--(3.4).
For the test of temporal convergence rate, we take the ellipse as an example and

similarly compute the reference solution using a fine mesh size of N = 10000 and
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Fig. 3. Log-log plot of the manifold distance errors for solving the AP-CSF with an ellipse being
its initial shape at two different times: (a) T = 0.25, (b) T = 1. (c) The corresponding evolution of
the mesh distributional function \Psi (t), where N = 640 and \tau = 1/1280.

a time step of \tau = 1/1280. Figures 3(a)--3(b) show the comparison of the tempo-
ral convergence rate of the BGN1 scheme and BGN/BDFk schemes at different times
T = 0.25,1. It can be clearly observed that the numerical error of BGN/BDFk schemes
converge in kth-order, while the classical BGN1 scheme converges only linearly. The
evolution of the mesh distribution function is depicted in Figure 3(c) for different
schemes with the same computational parameters N = 640 and \tau = 1/1280. It is
worth noting that for long-time simulation, the mesh distribution function \Psi (t) ap-
proaches 1, indicating the long-time asymptotic mesh equidistribution, for all kinds of
algorithms. Furthermore, we also observe that the high-order algorithms will achieve
equidistributed mesh faster and the mesh distribution function is decreasing with re-
spect to the order k, showing the advantage of using high-order BGN/BDFk schemes
in achieving a more evenly distributed mesh.

Remark 4.3. In section 3, we highlight the limitations of standard extrapolation
approximations for the prediction polygon \widetilde \Gamma m+1. To illustrate this point, we use
the BGN/BDF3 algorithm to solve the AP-CSF with a ``flower"" initial curve, i.e., a
nonconvex curve parametrized by

X(\rho ) = ((2 + cos(12\pi \rho )) cos(2\pi \rho ), (2 + cos(12\pi \rho )) sin(2\pi \rho )), \rho \in \BbbI = [0,1].

Figure 4 (bottom row) demonstrates that when approximating the integration poly-
gon \widetilde \Gamma m+1 by extrapolation formula (3.7), the evolution becomes unstable even at
very early stage t = 0.05, eventually leading to a breakdown of the algorithm (see
Figure 4(d2)).

We further compare the evolution of geometric quantities in Figure 5. Fig-
ures 5(a1)--5(b1) demonstrate that our BGN/BDF3 scheme effectively preserves the
perimeter-decreasing property of AP-CSF and the error of the area is very small. Most
importantly, Figure 5(c1) illustrates the long-time asymptotic mesh equidistribution
property of our BGN/BDF3 algorithm. In comparison, when approximating the in-
tegration polygon by the extrapolation formula, we observe from Figure 5 (bottom
row) that the mesh ratio becomes extremely large after some time, ultimately leading
to the instability of the BGN/BDF3 algorithm. This highlights the essential role of
our treatment for approximations of the prediction polygon \widetilde \Gamma m+1 through the classi-
cal BGN1 scheme or lower-order BGN/BDFk schemes, which ensures the numerical
stability and long-time mesh equidistribution.
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Fig. 4. Evolution of AP-CSF for the flower initial curve by using the BGN/BDF3 algorithm

with various choices of predictions \widetilde Xm+1. Top row: Algorithm 3.2, i.e., approximating the prediction
polygon by a lower-order BGN/BDF2 scheme; Bottom row: approximating the prediction polygon
by using extrapolation formula (3.7). The parameters are chosen as N = 80 and \tau = 1/160.
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Fig. 5. Evolution of geometric quantities of AP-CSF for a flower initial shape by using
BGN/BDF3 algorithm: (a1)--(a2) the normalized perimeter; (b1)--(b2) the normalized area loss;

(c1)--(c2) the mesh distribution function \Psi (t). Top row: the prediction polygon \widetilde Xm+1 is obtained

by a lower-order BGN/BDF2 scheme. Bottom row: \widetilde Xm+1 is obtained by the extrapolation formula
(3.7). The parameters are chosen as N = 80 and \tau = 1/160.

Example 4.4 (extension to G-MCF). We extend the BGN/BDFk schemes to G-
MCF. For the convergence rate test, the initial shape is chosen as a unit circle, the
parameters are chosen as N = 5000, T = 0.25.

The construction of BGN/BDFk schemes for G-MCF is similar to the AP-CSF
case. We first rewrite the coupled equations as
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STABLE BDF-TYPE BGN-BASED PFEM FOR GEOMETRIC FLOWS A2889

\partial tX \cdot n= - \beta \kappa \alpha ,

\kappa n= - \partial ssX.
(4.7)

The corresponding BGN1 scheme and BGN/BDFk schemes adjust the first equation
in (2.2) and (3.1) to implicit terms as\biggl( 

Xm+1  - Xm

\tau 
,\varphi hnm

\biggr) h

\Gamma m

+
\bigl( 
\beta (\kappa m+1)\alpha ,\varphi h

\bigr) h
\Gamma m = 0,\Biggl( 

aXm+1  - \widehat Xm

\tau 
,\varphi h\widetilde nm+1

\Biggr) h

\widetilde \Gamma m+1

+
\bigl( 
\beta (\kappa m+1)\alpha ,\varphi h

\bigr) h\widetilde \Gamma m+1 = 0,

respectively, where the a, \widehat Xm are defined similarly. All of the above schemes can be
efficiently solved using Newton's iteration method [8, 37].

In order to test the temporal convergence rate for various choices of \alpha and \beta , we
use a unit circle as the initial data. The true solution is given by

Xtrue(\rho , t) =

\Biggl\{ 
(1 - (\alpha + 1)t)

1
\alpha +1 (cos(2\pi \rho ), sin(2\pi \rho )), \beta = 1, 0<\alpha \not = 1,

et(cos(2\pi \rho ), sin(2\pi \rho )), \beta = - 1, \alpha = - 1,

where \rho \in \BbbI and t\in [0, T ]. We use a sufficiently large number of grid points N = 5000,
and we observe the expected convergence order for different cases, as depicted in
Figures 6(a)--6(c). Moreover, Figures 6(d)--6(f) demonstrate that the BGN/BDFk
algorithms maintain the good mesh quality comparable to the classical BGN1 scheme,
regardless of the specific settings of (\alpha ,\beta ).

Example 4.5 (extension to WF). We extend the BGN/BDFk schemes to the
fourth-order WF. The initial shape is chosen as a unit circle which yields the ex-
act solution [11]
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Fig. 6. (Top row) Log-log plot of the manifold distance errors for solving G-MCF with a unit
circle as its initial shape at time T = 0.25 under different choices of (\alpha ,\beta ): (a) \beta = 1, \alpha = 1/3,
(b) \beta = 1, \alpha = 1/2, (c) \beta =  - 1, \alpha =  - 1. (Bottom row) the evolution of the corresponding mesh
distributional function \Psi (t) under different choices of (\alpha ,\beta ): (d) \beta = 1, \alpha = 1/3, (e) \beta = 1, \alpha = 1/2,
(f) \beta = - 1, \alpha = - 1, where N = 640 and \tau = 1/1280.
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Xtrue(\rho , t) = (1 + 2t)
1
4 (cos(2\pi \rho ), sin(2\pi \rho )), \rho \in \BbbI , t > 0.

Similar to the AP-CSF and G-MCF cases, we first reformulate the coupled equa-
tions as

\partial tX \cdot n= \partial ss\kappa  - 1

2
\kappa 3,

\kappa n= - \partial ssX.
(4.8)

The corresponding BGN1 scheme [11] and BGN/BDFk schemes adjust the first equa-
tion in (2.2) and (3.1) to\biggl( 

Xm+1  - Xm

\tau 
,\varphi hnm

\biggr) h

\Gamma m

+
\bigl( 
\partial s\kappa 

m+1, \partial s\varphi 
h
\bigr) 
\Gamma m = - 1

2

\bigl( 
(\kappa m+1)3,\varphi h

\bigr) h
\Gamma m ,\Biggl( 

aXm+1  - \widehat Xm

\tau 
,\varphi h\widetilde nm+1

\Biggr) h

\widetilde \Gamma m+1

+
\bigl( 
\partial s\kappa 

m+1, \partial s\varphi 
h
\bigr) \widetilde \Gamma m+1 = - 1

2

\bigl( 
(\kappa m+1)3,\varphi h

\bigr) h\widetilde \Gamma m+1 ,

respectively.
Figures 7(a)--7(b) display the convergence and the evolution of the mesh ratio

\Psi (t), respectively, which suggest that the BGN/BDFk scheme converges at the kth-
order in terms of manifold distance and it maintains the good mesh quality throughout
the simulation of the fourth-order WF.

4.2. Surface evolution. In this subsection, we mainly consider the following
geometric flows of surface evolution in three-dimensional space:

\bullet MCF, which is a second-order geometric flow defined by

\scrV = - \scrH n,(4.9)

where \scrH is the mean curvature of hypersurface;
\bullet Surface diffusion flow (SDF), which is a fourth-order geometric flow defined

by

\scrV =\Delta \Gamma \scrH n,(4.10)

where \Delta \Gamma is the surface Laplacian.

10-2
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BGN1
BGN/BDF2
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(a) (b)

Fig. 7. (a) Log-log plot of the numerical errors for solving the WF with unit circle initial shape
at time T = 0.25. (b) The evolution of the mesh distribution function \Psi (t), where the parameters
are chosen as N = 640 and \tau = 1/1280.
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Given an initial surface \Gamma (0), we use the MATLAB package DistMesh [38] to give
an initial triangulation polyhedron \Gamma 0 with good mesh quality. It is worth mentioning
that the manifold distance (4.4) can be easily extended to the three-dimensional case,
and we still use this shape metric to measure the difference between two polyhedrons.
We point out that other shape metrics such as Hausdorff distance [6, 28] can also
effectively characterize the convergence rates of our schemes. The numerical error
and convergence order are similarly defined as (4.5).

We further investigate the evolution of the following geometric quantities: (1)
the relative volume loss \Delta V (t), (2) the normalized surface area S(t)/S(0), which are
defined, respectively, for m\geq 0 as

\Delta V (t)| t=tm =
V m  - V 0

V 0
,

S(t)

S(0)

\bigm| \bigm| \bigm| \bigm| 
t=tm

=
Sm

S0
,

where V m is the volume enclosed by the polyhedron determined by Xm, and Sm

represents the surface area of the polyhedron. To evaluate the mesh quality of a
polyhedron, we introduce two mesh distribution functions rh(t) and ra(t) [10, 26]
defined as

rh(t)| t=tm
:=

maxj max\{ \| qm
j1
 - qm

j2
\| ,\| qm

j2
 - qm

j3
\| ,\| qm

j3
 - qm

j1
\| \} 

minj min\{ \| qm
j1
 - qm

j2
\| ,\| qm

j2
 - qm

j3
\| ,\| qm

j3
 - qm

j1
\| \} 

,

ra(t)| t=tm
:=

maxj | \sigma m
j | 

minj | \sigma m
j | 

.

Example 4.6 (extension to MCF). The BGN/BDFk schemes can be extended
straightforwardly to the MCF in \BbbR 3. It suffices to replace the curvature \kappa m+1 in (3.1)
by the mean curvature \scrH m+1.

For the test of convergence order, we choose the initial surface as a unit sphere,
which remains as a sphere with radius R(t) given by

R(t) =
\surd 
1 - 4t, t\in [0,1/4) .

For the initial triangulation, we fix the fine mesh size (J,K) = (93608,46806),
where J and K represent the number of triangles and vertices of polyhedra, respec-
tively. Figure 8(a) shows a log-log plot of the manifold errors at time T = 0.05 for
the BGN1 scheme and BGN/BDFk schemes with 2\leq k \leq 3, which demonstrates the
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Fig. 8. (a) Log-log plot of the manifold distance errors for solving the MCF until T = 0.05
with unit sphere initial shape, where the spatial parameters are chosen as (J,K) = (93608,46806).
The evolution of the mesh distribution functions: (b) rh(t) and (c) ra(t), where the parameters are
chosen as (J,K) = (14888,7446) and \tau = 1/1000.
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expected convergence rate. From Figures 8(b)--8(c), we observe that the two mesh
distribution functions rh(t) and ra(t) remain below 2 throughout the evolution, indi-
cating the good mesh quality of our proposed BGN/BDFk algorithms. We note that
for the BGN/BDF3 algorithm, the two mesh distribution functions increase rapidly
at the first step. The reason is that we need a fine time step to initiate BGN/BDF3
scheme to ensure the third-order accuracy (see Algorithm 3.2), however, as reported
in the recent paper [18], the classical BGN1 scheme for surface evolution may result
in mesh clustering for very fine time step sizes.

For the evolution test, we apply BGN/BDFk schemes to two benchmark dumbbell
examples [18, 24]. The initial surface is a dumbbell-shaped surface with a fat waist
given by the following parametrization:

X(\theta ,\varphi ) =

\left(  cos\varphi 
(0.6cos2\varphi + 0.4) cos\theta sin\varphi 
(0.6cos2\varphi + 0.4) sin\theta sin\varphi 

\right)  , \theta \in [0,2\pi ), \varphi \in [0, \pi ],(4.11)

or a dumbbell shape with a thin waist parametrized by

X(\theta ,\varphi ) =

\left(  cos\varphi 
(0.7cos2\varphi + 0.3) cos\theta sin\varphi 
(0.7cos2\varphi + 0.3) sin\theta sin\varphi 

\right)  , \theta \in [0,2\pi ), \varphi \in [0, \pi ].(4.12)

The numerical simulations are presented in Figures 9 and 10, respectively. We can
clearly observe that MCF evolves the first dumbbell shape to a round point (cf.
Figures 9(d1), 9(d2), and 9(d3)), and develops a neck pinch singularity for the second
dumbbell shape in finite time (cf. Figure 10(f)). We observe that the BGN/BDFk
algorithms achieve a similar mesh quality to the classical BGN1 scheme. The mesh
is slightly distorted in Figure 9(d3) since we use a fine time step size to predict the
polyhedron at the first step (cf. Algorithm 3.2), which may result in mesh distortion
for surface evolution as reported in [18]. Nevertheless, we have successfully obtained
the blowup times, that is t= 0.0908 for the first dumbbell shape and t= 0.0591 for the

Fig. 9. Evolution of MCF by the BGN1 scheme (first row), BGN/BDF2 scheme (second row),
and BGN/BDF3 scheme (third row) starting from the first dumbbell with a fat waist (note that the
images are scaled). The initial surface is triangulated into 3604 triangles with 1804 vertices and the
time step \tau = 1/10000.
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Fig. 10. Evolution of MCF by the BGN/BDF2 scheme starting from the first dumbbell with a
thin waist (the images are scaled). The initial surface is triangulated into 3276 triangles with 1640
vertices and the time step \tau = 1/10000.
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Fig. 11. Evolution of geometric quantities in MCF for two initial dumbbell shapes by using
BGN/BDFk algorithms: the first dumbbell example (4.11) (top row); the second dumbbell example
(4.12) (bottom row). The mesh distribution functions rh(t): (a1)--(a2); and ra(t): (b1)--(b2). The
normalized surface area: (c1)--(c2). The time step is chosen as \tau = 1/1000.

second dumbbell shape, respectively. These results are comparable to those reported
in [24, sections 7.2 and 7.3] and [18, Example 3.2].

The evolution of the two mesh distribution functions rh(t), ra(t), and the nor-
malized surface area are plotted in Figure 11. As clearly shown in Figures 11(a)--(b),
our high-order schemes exhibit similar mesh behavior to the classical BGN1 scheme
before the blowup time. Moreover, Figures 11(c1)--11(c2) demonstrate that our meth-
ods preserve the geometric property (i.e., the decreasing surface area) of MCF very
well.

Example 4.7 (extension to SDF). We investigate the performance of BGN/BDFk
schemes when applied to SDF in this example.

Specifically, the schemes for SDF can be derived similarly to the MCF case and
it suffices to adjust the first equation as
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Fig. 12. Evolution of geometric quantities for SDF applied to an initial ellipsoid using
BGN/BDFk algorithms. Top row: the normalized surface area; bottom row: the relative volume
loss. The triangulation parameters are set as (J,K) = (24952,12478) and the time step is set as
\tau = 1/160 for (a1), (a2); \tau = 1/320 for (b1), (b2); and \tau = 1/640 for (c1), (c2).

\biggl( 
Xm+1  - Xm

\tau 
,\varphi hnm

\biggr) h

\Gamma m

+
\bigl( 
\nabla \Gamma m\scrH m+1,\nabla \Gamma m\varphi h

\bigr) 
\Gamma m = 0,\Biggl( 

aXm+1  - \widehat Xm

\tau 
,\varphi h\widetilde nm+1

\Biggr) h

\widetilde \Gamma m+1

+
\bigl( 
\nabla \Gamma m\scrH m+1,\nabla \Gamma m\varphi h

\bigr) \widetilde \Gamma m+1 = 0.

Instead of conducting a convergence order test, we demonstrate the superiority
of our high-order schemes by examining the relative volume loss \Delta V (t). The initial
surface is a 2 : 1 : 1 ellipsoid defined by the equation x2/4 + y2 + z2 = 1, and we
set the triangulation parameters as (J,K) = (24952,12478). Figure 12 illustrates
that all methods maintain the geometric properties of SDF, i.e., the decrease of the
surface area and the conservation of the volume enclosed by the surface. Additionally,
Figures 12(a2), 12(b2), and 12(c2) highlight that our high-order algorithms result in
significantly smaller volume loss compared to BGN1 scheme [10], thus showcasing the
accuracy of our proposed methods.

In Figure 13, we present several evolution snapshots of the 2 : 1 : 1 ellipsoid towards
its equilibrium using the BGN/BDF2 scheme with the surface triangulation param-
eters (J,K) = (2780,1392). Furthermore, Figure 14 depicts the comparison of the
two mesh distribution functions rh(t) and ra(t) for both the BGN1 and BGN/BDFk
schemes. It is worth noting that our high-order method successfully evolves the el-
lipsoid into a perfect sphere while maintaining good mesh quality, similarly to the
classical BGN scheme.

In the last experiment, we apply our BGN/BDFk schemes to conduct the evolu-
tion of an 8 \times 1 \times 1 cuboid driven by SDF. As a benchmark example, this cuboid
pinches off at finite time [6, 10]. We select the triangulation parameters as (J,K) =
(2600,1302), and the time step is fixed as \tau = 1/2500. The evolution is depicted in
Figure 15, where we observe that the pinch-off event occurs at time t = 0.3636 for
the BGN1 scheme, t = 0.3692 for the BGN/BDF2 algorithm, and t = 0.3704 for the
BGN/BDF3 algorithm, respectively. The pinch-off time of this benchmark cuboid
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Fig. 13. Several evolution snapshots of SDF by the BGN/BDF2 scheme, where the initial shape
is chosen as the 2 : 1 : 1 ellipsoid, and the triangulation parameters (J,K) = (2780,1392) and
\tau = 10 - 4.
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Fig. 14. Evolution of mesh distribution functions of SDF for the 2 : 1 : 1 ellipsoid: (a) rh(t),
(b) ra(t), where (J,K) = (2780,1392) and \tau = 10 - 4.

example was reported as t = 0.369 in [10, section 5.5] using a tedious time adaptive
method, and it was predicted as t = 0.370 in [6, section 4.2] by using an implicit
method. We emphasize that our predicted pinch-off time agrees very well with the
previous results [6, 10], while requiring one to solve only two or three linear sys-
tems at each time step. Furthermore, the monotonic increasing behavior of pinch-off
times in Figures 15(d1)--15(d3) indicates that the high-order schemes provide a better
prediction of the pinch-off time.

5. Conclusion. We have proposed a type of novel temporal high-order (second-
order to fourth-order), parametric finite element method based on the BGN formu-
lation [7, 8, 12] for solving different types of geometric flows of curves and surfaces,
including CSF, AP-CSF, G-MCF, WF, MCF, and SDF. Our approach is constructed
based on the BGN formulation [7, 8, 12], the BDF in time, and linear finite element
approximation in space. We carefully choose the prediction polygon \widetilde \Gamma m+1 to ensure
that the approximation errors of all quantities are at \scrO (\tau k). The key to the success of
BGN/BDFk schemes is that \widetilde \Gamma m+1 should be given by solving lower-order BGN/BDFk
schemes, instead of standard extrapolation, to maintain the mesh quality, which is
very essential for the simulation of geometric flows. Extensive numerical experiments
demonstrate the expected, high-order accuracy and improved performance compared
to the classical BGN scheme.
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Fig. 15. Investigation of pinch-off time of an 8 \times 1 \times 1 cuboid driven by SDF by using the
BGN1 scheme (first row), BGN/BDF2 algorithm (second row) and BGN/BDF3 algorithm (third
row), where (J,K) = (2600,1302) and \tau = 1/2500.

However, designing high-order schemes that preserve the geometric structure,
specifically reducing the perimeter and conserving the enclosed area at the discrete
level, remains challenging for certain geometric flows such as AP-CSF and SDF [29],
which is our future work.
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versity.

REFERENCES

[1] G. Bai and B. Li, A new approach to the analysis of parametric finite element approxi-
mations to mean curvature flow , Found. Comput. Math., to appear, https://doi.org/10.
1007/s10208-023-09622-x.

[2] M. Bala\v zovjech and K. Mikula, A higher order scheme for a tangentially stabilized plane
curve shortening flow with a driving force, SIAM J. Sci. Comput., 33 (2011), pp.
2277--2294.

[3] E. B\"ansch, P. Morin, and R. H. Nochetto, A finite element method for surface diffusion:
The parametric case, J. Comput. Phys., 203 (2005), pp. 321--343.

[4] W. Bao, W. Jiang, and Y. Li, A symmetrized parametric finite element method for anisotropic
surface diffusion of closed curves, SIAM J. Numer. Anal., 61 (2023), pp. 617--641.

[5] W. Bao, W. Jiang, Y. Wang, and Q. Zhao, A parametric finite element method for solid-
state dewetting problem with anisotropic surface energies, J. Comput. Phys., 330 (2017),
pp. 380--400.

[6] W. Bao and Q. Zhao, A structure-preserving parametric finite element method for surface
diffusion, SIAM J. Numer. Anal., 59 (2021), pp. 2775--2799.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/0

9/
24

 to
 8

9.
24

4.
12

0.
17

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/s10208-023-09622-x
https://doi.org/10.1007/s10208-023-09622-x


STABLE BDF-TYPE BGN-BASED PFEM FOR GEOMETRIC FLOWS A2897

[7] J. W. Barrett, H. Garcke, and R. N\"urnberg, A parametric finite element method for
fourth order geometric evolution equations, J. Comput. Phys., 222 (2007), pp. 441--467.

[8] J. W. Barrett, H. Garcke, and R. N\"urnberg, On the variational approximation of combined
second and fourth order geometric evolution equations, SIAM J. Sci. Comput., 29 (2007),
pp. 1006--1041.

[9] J. W. Barrett, H. Garcke, and R. N\"urnberg, Numerical approximation of anisotropic
geometric evolution equations in the plane, IMA J. Numer. Anal., 28 (2008), pp. 292--330.

[10] J. W. Barrett, H. Garcke, and R. N\"urnberg, On the parametric finite element approxi-
mation of evolving hypersurfaces in \BbbR 3, J. Comput. Phys., 227 (2008), pp. 4281--4307.

[11] J. W. Barrett, H. Garcke, and R. N\"urnberg, Parametric approximation of Willmore flow
and related geometric evolution equations, SIAM J. Sci. Comput., 31 (2008), pp. 225--253.

[12] J. W. Barrett, H. Garcke, and R. N\"urnberg, Parametric finite element method approxima-
tions of curvature driven interface evolutions, in Geometric Partial Differential Equations.
Part I, Handb. Numer. Anal. 21, North-Holland, Amsterdam, 2020, pp. 275--423.

[13] T. Binz and B. Kov\'acs, A convergent finite element algorithm for generalized mean curvature
flows of closed surfaces, IMA J. Numer. Anal., 42 (2022), pp. 2545--2588.

[14] F. Cao, Geometric Curve Evolution and Image Processing, Lecture Notes in Math. 1805,
Springer, Berlin, 2003.

[15] K. Deckelnick and G. Dziuk, On the approximation of the curve shortening flow , in Calculus
of Variations, Applications and Computations, Pont-\`a-Mousson, 1994, Pitman Res. Notes
Math. Ser. 326, Longman Sci. Tech., Harlow, UK, 1995, pp. 100--108.

[16] K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial differential
equations and mean curvature flow , Acta Numer., 14 (2005), pp. 139--232.

[17] Q. Du, C. Liu, R. Ryham, and X. Wang, A phase field formulation of the Willmore problem,
Nonlinearity, 18 (2023), pp. 1249--1267.

[18] B. Duan and B. Li, New artificial tangential motions for parametric finite element approxi-
mation of surface evolution, SIAM J. Sci. Comput., 46 (2024), pp. A587--A608.

[19] G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1990), pp. 603--611.
[20] G. Dziuk, Convergence of a semi-discrete scheme for the curve shortening flow , Math. Models

Methods Appl. Sci., 4 (1994), pp. 589--606.
[21] G. Dziuk, Discrete anisotropic curve shortening flow , SIAM J. Numer. Anal., 36 (1999),

pp. 1808--1830.
[22] G. Dziuk, Computational parametric Willmore flow , Numer. Math., 111 (2008), pp. 55--80.
[23] G. Dziuk, E. Kuwert, and R. Schatzle, Evolution of elastic curves in \BbbR n: Existence and

computation, SIAM J. Math. Anal., 33 (2002), pp. 1228--1245.
[24] C. M. Elliott and H. Fritz, On approximations of the curve shortening flow and of the mean

curvature flow based on the DeTurck trick , IMA J. Numer. Anal., 37 (2016), pp. 543--603.
[25] S. Esedoglu, S. J. Ruuth, and R. Tsai, Threshold dynamics for high order geometric motions,

Interfaces Free Bound., 10 (2008), pp. 263--282.
[26] J. Hu and B. Li, Evolving finite element methods with an artificial tangential velocity for mean

curvature flow and Willmore flow , Numer. Math., 152 (2022), pp. 127--181.
[27] W. Jiang and B. Li, A perimeter-decreasing and area-conserving algorithm for surface diffu-

sion flow of curves, J. Comput. Phys., 443 (2021), 110531.
[28] W. Jiang, C. Su, and G. Zhang, A second-order in time, BGN-based parametric finite element

method for geometric flows of curves, J. Comput. Phys., 514 (2024), 113220.
[29] W. Jiang, C. Su, and G. Zhang, A convexity-preserving and perimeter-decreasing parametric

finite element method for the area-preserving curve shortening flow , SIAM J. Numer.
Anal., 61 (2023), pp. 1989--2010.

[30] B. Kov\'acs, B. Li, and C. Lubich, A convergent evolving finite element algorithm for mean
curvature flow of closed surfaces, Numer. Math., 143 (2019), pp. 797--853.

[31] B. Kov\'acs, B. Li, and C. Lubich, A convergent algorithm for forced mean curvature flow
driven by diffusion on the surface, Interfaces Free Bound., 22 (2020), pp. 443--464.

[32] B. Kov\'acs, B. Li, and C. Lubich, A convergent evolving finite element algorithm for Willmore
flow of closed surfaces, Numer. Math., 149 (2021), pp. 595--643.

[33] R. J. Leveque, Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems, SIAM, Philadelphia, 2007.

[34] J. A. Mackenzie, M. Nolan, C. F. Rowlatt, and R. H. Insall, An adaptive moving mesh
method for forced curve shortening flow , SIAM J. Sci. Comput., 41 (2019), pp. A1170--
A1200.

[35] K. Mikula and D. \v Sev\v covi\v c, A direct method for solving an anisotropic mean curvature flow
of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), pp. 1545--1565.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/0

9/
24

 to
 8

9.
24

4.
12

0.
17

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A2898 WEI JIANG, CHUNMEI SU, AND GANGHUI ZHANG

[36] W. W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys., 27
(1956), pp. 900--904.

[37] L. Pei and Y. Li, A structure-preserving parametric finite element method for area-conserved
generalized mean curvature flow , J. Sci. Comput., 96 (2023), 6.

[38] P. O. Persson, Mesh Generation for Implicit Geometries, Ph.D. thesis, Department of Math-
ematics, MIT, Cambridge, MA, 2004.

[39] S. J. Ruuth, B. Merriman, and S. Osher, Convolution-generated motion as a link be-
tween cellular automata and continuum pattern dynamics, J. Comput. Phys., 151 (2004),
pp. 836--861.

[40] G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge Univer-
sity Press, Cambridge, 2001.

[41] D. \v Sev\v coviv\v c and K. Mikula, Evolution of plane curves driven by a nonlinear function of
curvature and anisotropy, SIAM J. Appl. Math., 61 (2001), pp. 1473--1501.

[42] J. Steinhilber, Numerical Analysis for Harmonic Maps Between Hypersurfaces and Grid Im-
provement for Computational Parametric Geometric Flows. Ph.D. thesis, Albert-Ludwigs-
Universit\"at Freiburg, Freiburg, Germany, 2014.

[43] Q. Zhao, W. Jiang, and W. Bao, A parametric finite element method for solid-state dewetting
problems in three dimensions, SIAM J. Sci. Comput., 42 (2020), pp. B327--B352.

[44] Q. Zhao, W. Jiang, and W. Bao, An energy-stable parametric finite element method for
simulating solid-state dewetting, IMA J. Numer. Anal., 41 (2021), pp. 2026--2055.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/0

9/
24

 to
 8

9.
24

4.
12

0.
17

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y


	Introduction
	Review of classical BGN scheme
	High order in time, BGN-based algorithms
	Numerical results
	Curve evolution
	Surface evolution

	Conclusion
	Acknowledgments
	References

